
 1

Tera-sample-per-second Real-time Waveform Digitizer 
 

Yan Han*, Ozdal Boyraz, and Bahram Jalali 

Department of Electrical Engineering, University of California, Los Angeles, CA 90095. 

E-mails: yanhan@creol.ucf.edu, Jalali@ucla.edu 

Journal-ref: submitted to Applied Physics Letters, April 2005. 

 

ABSTRACT 

We demonstrate a real-time transient waveform digitizer with a record 1 TSa/s (Tera-

Sample/sec) sampling rate. This is accomplished by using a photonic time stretch 

preprocessor which slows down the electrical waveform before it is captured by an 

electronic digitizer. 

 

                                                 

* Present address: College of Optics and Photonics: CREOL & FPCE, University of Central Florida, 4000 

Central Florida Blvd., Orlando, FL 32816 



 2

Tera-sample-per-second Real-time Waveform Digitizer 
 

Digital processing and storage of information is a ubiquitous function encountered in 

virtually every science and engineering discipline. Since signals originating in the 

physical world are analog, Analog-to-Digital Converters (ADC), otherwise known as 

digitizers, play a central role. The most challenging signals to digitize are ultrafast 

transients that are non-repetitive.  These waveforms arise in a number of applications 

including (i) diagnostic tool in particle accelerators that probe fundamental building 

blocks of nature; (ii) X-ray free electron lasers1; (iii) study of EMP (electromagnetic 

pulse) weapons 2 . Digitizers with real-time capability are required because the non-

repetitive nature of these signals renders traditional sampling oscilloscopes useless. 

 

The sampling rate of conventional electronic ADCs, such as ones used in high speed 

instruments, is limited by the speed of the electronic circuitry, and in the case where the 

interleaving architecture is used, by the mismatches in the multi-channel ADC array3,4. 

While the performance of electronic ADCs continues to improve, the sampling rate of a 

state-of-the-art system is currently about 20 GSa/s with ~5 ENOB (Effective Number Of 

Bits). Achieving TSa/s performance is clearly beyond the reach of conventional 

approaches. One potential solution to overcome the electronic bottleneck is to use 

photonic pre-processing. In particular, the photonic time stretch approach has proven to 

be an effective way to extend the sampling rate and the bandwidth. Here, the high speed 

transient waveform is first slowed down and then captured by a conventional electronic 

digitizer5,6. In this paper, we demonstrate such a system that achieves a sampling rate of 1 

TSa/s. This system consists of a 50x time stretch pre-processor and a 20 GSa/s electronic 
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digitizer. To the best of our knowledge, this is the first time that the real-time digitization 

at 1 TSa/s has been achieved. 

 

The time stretch preprocessing, shown in Fig. 1, consists of three steps: time-to-

wavelength transformation, wavelength domain processing, and wavelength-to-time 

transformation. Time-to-wavelength transformation occurs when the electrical signal 

modulates the intensity of a linearly-chirped optical pulse. At the output of modulator, the 

input signal’s time scale is linearly mapped onto the optical wavelength. The second and 

third steps occur simultaneously when the waveform is broadened as it travels through 

the second dispersive optical medium and is subsequently photodetected. 

 

The major obstacle to achieving a stretch factor of 50x is to overcome the frequency 

fading that is associated with dispersive propagation. This phenomenon has been 

described in details elsewhere5,6. Briefly, it occurs due to the dispersion-induced 

interference between the two modulation-sidebands. We overcome this problem using the 

recently proposed phase diversity technique, where two stretched waveforms with 

complementary fading characteristics are realized and combined to eliminate the 

bandwidth limitation7. Another practical concern is the large loss of dispersive fiber 

required to achieve such a large stretch factor. This problem is mitigated by the judicious 

use of optical amplification in such a manner as to optimize the overall signal to noise 

ratio while avoiding degradation from optical nonlinearity. 
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The block diagram of experimental setup for a 50x photonic time stretch preprocessor is 

shown in Fig. 2. Ultrashort and broadband optical pulses are produced, with repetition 

period T=200ns, through the continuum generation process. Around 15 nm of the optical 

spectrum at (centered at 1590 nm) is sliced using an optical bandpass filter and is used in 

the experiment. After being linearly chirped by propagation in a spool of dispersive fiber, 

a given pulse enters the electro-optic modulator where it captures the electrical transient. 

The chirped optical pulse has finite amplitude variations resulting in distortion of the 

captured signal. The distortion is removed by using a reference waveform and digital 

filtering6. The modulator has two outputs with complimentary fading characteristics, and 

after delaying one by T/2, the outputs are interleaved and stretched together in the second 

dispersive fiber. The first fiber has a total dispersion of D1 = -101 ps/nm, creating a 

chirped optical pulse with around 1.5 ns duration. The second fiber has a total dispersion 

of D2 = -4921 ps/nm. The stretch factor is give by (D1+D2)/D1 = 505,6. To minimize the 

noise contributed by the optical amplifiers, the waveform is filtered by an optical 

bandpass filter before photodetection. The detected waveform is subsequently captured 

by a Tektronix TDS7404 (4GHz analog bandwidth, 20GSa/s) real-time digitizer. The 

effective sampling rate of this system is 20 GSa/s x 50 = 1 TSa/s and the intrinsic input 

analog bandwidth is 4 GHz x 50 = 200 GHz, although, in the experiments reported here, 

the electro-optic modulator places a limit of around 50 GHz. 

 

Figure 3 shows the real-time capture of a 48 GHz tone at 1 TSa/s. The measured voltage 

Full Width Half Maximum (FWHM) time aperture is 1.1 ns. The time aperture 

determines the length of transients that can be captured. The measured stretch factor is 
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50.5. To obtain the average SNR, 200 such real-time measurements are preformed. Over 

a 10 GHz digitally filtered bandwidth centered at 48 GHz, the mean and standard 

deviation of SNR in each of 200 measurements is 22.7 ± 1.08 dB corresponding to 

3.5 ± 0.2 ENOB. Measurements at other input frequencies with the same bandwidth 

resulted in up to 4.2 ENOB. 

 

The digitizer performance is also measured in the frequency domain. Fig. 4 shows the 

digital spectrum of a measured 26 GHz signal and a 42 GHz signal, respectively. The 

Hanning window was used before discrete Fourier transform. We note that no digital 

filter was used to obtain the data in Fig. 4, hence the input analog bandwidth of these 

spectrums is 0 – 200 GHz. The 2nd harmonic distortion tone is observed in Fig. 4. These 

arise due to nonlinear electrooptic modulation that is affected by memory effects in the 

fiber, a phenomenon that has been previously predicted by theory6. Post-nonlinear-

compensation performed in the digital domain similar to broadband power amplifier 

linearization in wireless communications can potentially mitigate this type of distortion. 

The highest spurious peak appearing at 125 GHz is due to the electronic digitizer and is 

independent of the time stretch processor. 

 

Although the TSa/s digitizer has an intrinsic bandwidth of 200 GHz, the experimental 

input bandwidth is limited by the bandwidth of the electro-optic modulator to 

approximately 50 GHz. One method to effectively increase the modulation bandwidth is 

to use harmonic modulation. Conventionally, the MZ modulator is biased at the 

quadrature point, at which even harmonics are suppressed. If a MZ modulator is biased at 
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the peak or null of transmission, fundamental frequency and odd harmonics, instead, are 

suppressed. The lowest frequency component is the second harmonic. Hence, an 80 GHz 

sinusoid modulated optical pulse can be generated from a 40 GHz input. The digital 

magnitude spectrum of captured 80 GHz signal is shown in Fig. 5. The clean spectral line 

at 80 GHz demonstrates the potential of time stretch processor beyond 50 GHz if an MZ 

modulator with a larger bandwidth is used in the setup. The spurious tones at 40 and 120 

GHz are from the under-suppressed fundamental frequency and the 3rd harmonic. 

 

Optical nonlinearity may distort the stretched signal. It is especially important in TSa/s 

experiment, in which multiple optical amplifications are needed to compensate fiber loss. 

Improper amplifier design may significantly distort signal. An example of distortion 

pattern is shown in Fig. 6. The distortion (amplitude reduction) is most severe at the 

center of pulse, where the pulse has highest peak power. This measured distortion pattern 

is verified by the numerical simulation and is the result of interaction between fiber 

dispersion and optical nonlinearity. When the optical pulse is modulated by a sinusoid 

signal, optical nonlinearity introduces an intensity dependent phase shift in propagation. 

Dispersion causes phase-to-amplitude conversion and hence results in distortion of signal 

amplitude6. Because optical power is highest at the center of time window, the extent of 

nonlinear distortion varies across the time window and introduces the distortion pattern 

observed in Fig. 6.  

 

In summary, the photonic time stretch technique has been used to realize a real-time 

transient digitizer with the record one TSa/s sampling rate. The system has a FWHM time 
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aperture of 1.1 ns. Measured over a 10 GHz bandwidth, the ENOB of the system ranges 

from 3.5-4.2 bits depending on the input signal frequency. 
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Fig. 1. Block diagram of the photonic time stretch preprocessor. 
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Fig. 2. Experiment setup of TSa/s digitizer with a 50x photonic time stretch 

preprocessor. EDFA: Erbium-Doped Fiber Amplifier. 
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Fig. 3. Digitization of a 48 GHz sinusoid at 1 TSa/s. Lines are obtained using 

standard sine curve fitting. 
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Fig. 4. The digital magnitude spectrum of captured signals at 26 GHz (solid line) 

and 48 GHz (dashed line). 
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Fig. 5. The digital magnitude spectrum of captured signals at 80 GHz. 
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Fig. 6. Distortion caused by nonlinear optical effect in the dispersive fiber.  
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